

Safety Data Sheet according to (EC) No 1907/2006 as amended

Page 1 of 25

SDS No.: 695180

V004.0 Revision: 02.12.2022

printing date: 20.03.2023

Replaces version from: 23.06.2022

LOCTITE 3D IND475 A60 HIGH REBOUND

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

LOCTITE 3D IND475 A60 HIGH REBOUND

1.2. Relevant identified uses of the substance or mixture and uses advised against

Intended use: 3D Printing

1.3. Details of the supplier of the safety data sheet

Henkel Ltd Adhesives

Wood Lane End

HP2 4RQ Hemel Hempstead

Great Britain

Phone: +44 (1442) 278000

SDSinfo.Adhesive@henkel.com

For Safety Data Sheet updates please visit our website https://mysds.henkel.com/index.html#/appSelection or www.henkel-adhesives.com.

1.4. Emergency telephone number

24 Hours Emergency Tel: +44 (0)1442 278497

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (CLP):

Skin irritation Category 2

H315 Causes skin irritation.

Serious eye irritation Category 2

H319 Causes serious eye irritation.

Skin sensitizer Category 1

H317 May cause an allergic skin reaction.

Toxic to reproduction Category 2

H361f Suspected of damaging fertility.

Specific target organ toxicity - single exposure Category 3

H335 May cause respiratory irritation.

Target organ: respiratory tract irritation

Specific target organ toxicity - repeated exposure Category 1

H372 Causes damage to organs through prolonged or repeated exposure.

Chronic hazards to the aquatic environment Category 2

H411 Toxic to aquatic life with long lasting effects.

2.2. Label elements

Label elements (CLP):

Hazard pictogram:

Contains 2H-Azepin-2-one, 1-ethenylhexahydro-

Aliphatic Urethane Acrylate Oligomer

2-Propenoic acid, dodecyl ester

Mixture of less 3-(4-(2-Hydroxy-2-methylpropionyl)phenyl)-1,1,3-trimethylindan-6-yl 2-

hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m

Ethyl phenyl(2,4,6-trimethylbenzoyl)phosphinate

Reaction mass of pentamethyl-4-piperidylsebacates

Triacrylate ester

2-Hydroxyethyl methacrylate

Trimethylolpropane triacrylate

Signal word: Danger

Hazard statement: H315 Causes skin irritation.

> H317 May cause an allergic skin reaction. H319 Causes serious eye irritation. H335 May cause respiratory irritation. H361f Suspected of damaging fertility.

H372 Causes damage to organs through prolonged or repeated exposure.

H411 Toxic to aquatic life with long lasting effects.

Precautionary statement: P261 Avoid breathing vapors.

P280 Wear protective gloves/protective clothing. Prevention

P273 Avoid release to the environment.

Precautionary statement:

P302+P352 IF ON SKIN: Wash with plenty of soap and water. Response P337+P313 If eye irritation persists: Get medical advice/attention.

P333+P313 If skin irritation or rash occurs: Get medical advice/attention.

2.3. Other hazards

None if used properly.

Following substances are present in a concentration ≥ the concentration limit for depiction in Section 3 and fulfill the criteria for PBT/vPvB, or were identified as endocrine disruptor (ED):

This mixture does not contain any substances in a concentration ≥ the concentration limit for depiction in Section 3 that are assessed to be a PBT, vPvB or ED.

SECTION 3: Composition/information on ingredients

3.2. Mixtures

Declaration of the ingredients according to CLP (EC) No 1272/2008:

Hazardous components CAS-No. EC Number REACH-Reg No.	Concentration	Classification	Specific Conc. Limits, M- factors and ATEs	Add. Information
Aliphatic Urethane Acrylate Oligomer	20- 40 %	Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335		
2H-Azepin-2-one, 1- ethenylhexahydro- 2235-00-9 218-787-6 01-2119977109-27	20- 40 %	Eye Irrit. 2, H319 Acute Tox. 4, Oral, H302 Acute Tox. 4, Dermal, H312 Skin Sens. 1B, H317 STOT RE 1, H372		
Aliphatic Urethane Acrylate Oligomer	10- 20 %	Skin Irrit. 2, H315 Eye Irrit. 2, H319 STOT SE 3, H335 Skin Sens. 1, H317		
2-Propenoic acid, dodecyl ester 2156-97-0 218-463-4 01-2119976296-23	10- 20 %	Skin Sens. 1, H317 STOT SE 3, H335 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Aquatic Chronic 2, H411	STOT SE 3; H335; C >= 10 %	
Mixture of less 3-(4-(2-Hydroxy- 2-methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3- (4-(2-Hydroxy-2-m 163702-01-0 402-990-3 01-0000015270-82	1- < 5 %	Repr. 2, H361f		
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7 282-810-6 01-2119987994-10	1- < 5 %	Aquatic Chronic 2, H411 Skin Sens. 1B, H317		
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5 915-687-0 01-2119491304-40	0,1-< 1 %	Aquatic Acute 1, H400 Aquatic Chronic 1, H410 Skin Sens. 1A, H317 Repr. 2, H361f	M acute = 1 M chronic = 1 ===== dermal:ATE = 3.171 mg/kg	
Triacrylate ester 52408-84-1 500-114-5 500-114-5 01-2119487948-12	0,1-< 1 %	Eye Irrit. 2, H319 Skin Sens. 1B, H317		
2-Hydroxyethyl methacrylate 868-77-9 212-782-2 01-2119490169-29	0,1-< 1 %	Skin Irrit. 2, H315 Skin Sens. 1, H317 Eye Irrit. 2, H319		
Butyl hydroxytoluene 128-37-0 204-881-4 01-2119565113-46	0,1-< 0,25 %	Aquatic Acute 1, H400 Aquatic Chronic 1, H410	M acute = 1 M chronic = 1	
Titanium dioxide 13463-67-7 236-675-5 01-2119489379-17	0,1-< 1 %	Carc. 2, Inhalation, H351		
Trimethylolpropane triacrylate 15625-89-5 239-701-3 01-2119489896-11	0,1- < 1 %	Aquatic Chronic 1, H410 Aquatic Acute 1, H400 Skin Irrit. 2, H315 Eye Irrit. 2, H319 Skin Sens. 1, H317 Carc. 2, H351	M acute = 1 M chronic = 1	

For full text of the H - statements and other abbreviations see section 16 "Other information". Substances without classification may have community workplace exposure limits available.

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation:

Move to fresh air. If symptoms persist, seek medical advice.

Skin contact:

Rinse with running water and soap.

Obtain medical attention if irritation persists.

Eye contact:

Rinse immediately with plenty of running water (for 10 minutes), seek medical attention from a specialist.

Ingestion

Rinse mouth, drink 1-2 glasses of water, do not induce vomiting, consult a doctor.

4.2. Most important symptoms and effects, both acute and delayed

SKIN: Redness, inflammation.

EYE: Irritation, conjunctivitis.

RESPIRATORY: Irritation, coughing, shortness of breath, chest tightness.

SKIN: Rash, Urticaria.

4.3. Indication of any immediate medical attention and special treatment needed

See section: Description of first aid measures

SECTION 5: Firefighting measures

5.1. Extinguishing media

Suitable extinguishing media:

water, carbon dioxide, foam, powder

Extinguishing media which must not be used for safety reasons:

High pressure waterjet

5.2. Special hazards arising from the substance or mixture

In the event of a fire, carbon monoxide (CO), carbon dioxide (CO2) and nitrogen oxides (NOx) can be released.

5.3. Advice for firefighters

Wear self-contained breathing apparatus and full protective clothing, such as turn-out gear.

Additional information:

In case of fire, keep containers cool with water spray.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Avoid contact with skin and eyes.

Wear protective equipment.

Ensure adequate ventilation.

Keep away from sources of ignition.

6.2. Environmental precautions

Do not empty into drains / surface water / ground water.

6.3. Methods and material for containment and cleaning up

For small spills wipe up with paper towel and place in container for disposal.

For large spills absorb onto inert absorbent material and place in sealed container for disposal.

Dispose of contaminated material as waste according to Section 13.

6.4. Reference to other sections

See advice in section 8

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Avoid skin and eye contact. See advice in section 8

Hygiene measures:

Good industrial hygiene practices should be observed.

Wash hands before work breaks and after finishing work.

Do not eat, drink or smoke while working.

7.2. Conditions for safe storage, including any incompatibilities

Ensure good ventilation/extraction.

Keep container tightly sealed.

Refer to Technical Data Sheet

7.3. Specific end use(s)

3D Printing

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

Occupational Exposure Limits

Valid for

Great Britain

Ingredient [Regulated substance]	ppm	mg/m³	Value type	Short term exposure limit category / Remarks	Regulatory list
2,6-di-tert-Butyl-p-cresol 128-37-0 [2,6-DI-TERT-BUTYL-P-CRESOL]		10	Time Weighted Average (TWA):		EH40 WEL
Titanium dioxide 13463-67-7 [TITANIUM DIOXIDE, RESPIRABLE]		4	Time Weighted Average (TWA):		EH40 WEL
Titanium dioxide 13463-67-7 [TITANIUM DIOXIDE, TOTAL INHALABLE]		10	Time Weighted Average (TWA):		EH40 WEL

Occupational Exposure Limits

Valid for

Ireland

Ingredient [Regulated substance]	ppm	mg/m ³	Value type	Short term exposure limit category / Remarks	Regulatory list
2,6-di-tert-Butyl-p-cresol 128-37-0 [2,6-DITERTIARY-BUTYL-PARA- CRESOL]		2	Time Weighted Average (TWA):		IR_OEL
Titanium dioxide 13463-67-7 [TITANIUM DIOXIDE]		10	Time Weighted Average (TWA):		IR_OEL
Titanium dioxide 13463-67-7 [TITANIUM DIOXIDE]		4	Time Weighted Average (TWA):		IR_OEL

$\label{eq:predicted} \textbf{Predicted No-Effect Concentration (PNEC):}$

Name on list	Environmental Compartment	Exposure period	Value				Remarks
			mg/l	ppm	mg/kg	others	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	aqua (freshwater)		0,00101 mg/l				
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	aqua (marine water)		0,000101 mg/l				
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	aqua (intermittent releases)		0,035 mg/l				
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	sediment (freshwater)				0,24 mg/kg		
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	sediment (marine water)				0,024 mg/kg		
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	Soil				0,047 mg/kg		
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	aqua (freshwater)		0,002 mg/l				
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	aqua (marine water)		0,00022 mg/l				
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	aqua (intermittent releases)		0,009 mg/l				
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	sewage treatment plant (STP)		1 mg/l				
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	sediment (freshwater)				1,05 mg/kg		
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	sediment (marine water)				0,11 mg/kg		
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	Soil				0,21 mg/kg		
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	Predator						no potential for bioaccumulation
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	aqua (freshwater)		0,006 mg/l				
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	aqua (intermittent releases)		0,057 mg/l				
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	Sewage treatment plant		10 mg/l				
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	sediment (freshwater)				0,078 mg/kg		
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	sediment (marine water)				0,008 mg/kg		
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	aqua (marine water)		0,001 mg/l				
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	Soil				0,012 mg/kg		
2-Hydroxyethyl methacrylate 868-77-9 2-Hydroxyethyl methacrylate	aqua (freshwater)		0,482 mg/l				
868-77-9 2-Hydroxyethyl methacrylate	aqua (marine water) sewage		0,482 mg/l 10 mg/l				
868-77-9	treatment plant (STP)						

2-Hydroxyethyl methacrylate	aqua	1 mg/l		
868-77-9	(intermittent			
	releases)			
2-Hydroxyethyl methacrylate	sediment		3,79 mg/kg	
868-77-9	(freshwater)			
2-Hydroxyethyl methacrylate	sediment		3,79 mg/kg	
868-77-9	(marine water)			
2-Hydroxyethyl methacrylate	Soil		0,476	
868-77-9			mg/kg	
2-Hydroxyethyl methacrylate	Predator			no potential for
868-77-9				bioaccumulation
2-Hydroxyethyl methacrylate	Marine water -	1 mg/l		
868-77-9	intermittent			
2,6-Di-tert-butyl-p-cresol	aqua	0,000199		
128-37-0	(freshwater)	mg/l		
2,6-Di-tert-butyl-p-cresol	aqua (marine	0,00002		
128-37-0	water)	mg/l		
2,6-Di-tert-butyl-p-cresol	sewage	0,17 mg/l		
128-37-0	treatment plant			
2,6-Di-tert-butyl-p-cresol	(STP)		0.0996	
128-37-0			-,	
2,6-Di-tert-butyl-p-cresol	(freshwater)		mg/kg	
2,6-Di-tert-butyl-p-cresol 128-37-0	(marine water)		0,00996 mg/kg	
2,6-Di-tert-butyl-p-cresol	Soil		0,04769	
128-37-0	3011		mg/kg	
2,6-Di-tert-butyl-p-cresol	oral		8,33 mg/kg	
128-37-0	Orai		6,55 mg/kg	
2,6-Di-tert-butyl-p-cresol	aqua	0,00199		
128-37-0	(intermittent	mg/l		
	releases)	8		
2,6-Di-tert-butyl-p-cresol	Air			no hazard identified
128-37-0				
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	Soil		0,003	
propanediyl diacrylate			mg/kg	
15625-89-5				
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	sediment		0,017	
propanediyl diacrylate	(freshwater)		mg/kg	
15625-89-5				
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	sediment		0,002	
propanediyl diacrylate	(marine water)		mg/kg	
15625-89-5				
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	aqua	0,00087		
propanediyl diacrylate	(freshwater)	mg/l		
15625-89-5		0.000007		
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate	aqua (marine	0,000087		
15625-89-5	water)	mg/l		
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	cawaga	6,25 mg/l		
propanediyl diacrylate	sewage treatment plant	0,23 Hig/1		
15625-89-5	(STP)			
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	oral		10 mg/kg	
propanediyl diacrylate	orar		TO mg/kg	
15625-89-5				
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3-	aqua	0,0087		
propanediyl diacrylate	(intermittent	mg/l		
15625-89-5	releases)			
<u> </u>				

Derived No-Effect Level (DNEL):

Name on list	Application Area	Route of Exposure	Health Effect	Exposure Time	Value	Remarks
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	Workers	Inhalation	Long term exposure - systemic effects		4,9 mg/m3	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	Workers	dermal	Long term exposure - systemic effects		0,7 mg/kg	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	General population	Inhalation	Long term exposure - systemic effects		1,04 mg/m3	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	General population	dermal	Long term exposure - systemic effects		0,42 mg/kg	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	Workers	Inhalation	Long term exposure - local effects		0,17 mg/m3	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	General population	Inhalation	Long term exposure - local effects		0,04 mg/m3	
1-Vinylhexahydro-2H-azepin-2-one 2235-00-9	General population	oral	Long term exposure - systemic effects		0,4 mg/kg	
Dodecyl acrylate 2156-97-0	Workers	inhalation	Long term exposure - systemic effects		97,9 mg/m3	
Dodecyl acrylate 2156-97-0	Workers	dermal	Long term exposure - systemic effects		138,9 mg/kg	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	Workers	dermal	Long term exposure - systemic effects		1,7 mg/kg	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	Workers	inhalation	Long term exposure - systemic effects		5,88 mg/m3	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	General population	inhalation	Long term exposure - systemic effects		0,87 mg/m3	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	General population	dermal	Long term exposure - systemic effects		0,5 mg/kg	
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	General population	oral	Long term exposure - systemic effects		0,5 mg/kg	
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	Workers	inhalation	Long term exposure - systemic effects		1,27 mg/m3	no potential for bioaccumulation
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	Workers	dermal	Long term exposure - systemic effects		1,8 mg/kg	no potential for bioaccumulation
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	General population	dermal	Long term exposure - systemic effects		0,9 mg/kg	no potential for bioaccumulation
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	General population	inhalation	Long term exposure - systemic effects		0,31 mg/m3	no potential for bioaccumulation
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	General population	oral	Long term exposure - systemic effects		0,18 mg/kg	no potential for bioaccumulation
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	Workers	inhalation	Long term exposure - systemic effects		7,4 mg/m3	
Glycerol, propoxylated, esters with acrylic acid 1-6.5PO 52408-84-1	Workers	dermal	Long term exposure - systemic effects		2,1 mg/kg	
2-Hydroxyethyl methacrylate 868-77-9	Workers	dermal	Long term exposure - systemic effects		1,3 mg/kg	no potential for bioaccumulation
2-Hydroxyethyl methacrylate 868-77-9	Workers	Inhalation	Long term exposure - systemic effects		4,9 mg/m3	no potential for bioaccumulation
2-Hydroxyethyl methacrylate 868-77-9	General population	dermal	Long term exposure -		0,83 mg/kg	no potential for bioaccumulation

		1	systemic effects		
2-Hydroxyethyl methacrylate 868-77-9	General population	Inhalation	Long term exposure - systemic effects	2,9 mg/m3	no potential for bioaccumulation
2-Hydroxyethyl methacrylate 868-77-9	General population	oral	Long term exposure - systemic effects	0,83 mg/kg	no potential for bioaccumulation
2,6-Di-tert-butyl-p-cresol 128-37-0	Workers	inhalation	Long term exposure - systemic effects	3,5 mg/m3	no hazard identified
2,6-Di-tert-butyl-p-cresol 128-37-0	Workers	dermal	Long term exposure - systemic effects	0,5 mg/kg	no hazard identified
2,6-Di-tert-butyl-p-cresol 128-37-0	General population	inhalation	Long term exposure - systemic effects	0,86 mg/m3	no hazard identified
2,6-Di-tert-butyl-p-cresol 128-37-0	General population	dermal	Long term exposure - systemic effects	0,25 mg/kg	no hazard identified
2,6-Di-tert-butyl-p-cresol 128-37-0	General population	oral	Long term exposure - systemic effects	0,25 mg/kg	no hazard identified
Titanium dioxide 13463-67-7	Workers	inhalation	Long term exposure - local effects	0,17 mg/m3	
Titanium dioxide 13463-67-7	General population	inhalation	Long term exposure - local effects	0,028 mg/m3	
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate 15625-89-5	Workers	dermal	Long term exposure - systemic effects	83 mg/kg	
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate 15625-89-5	Workers	inhalation	Long term exposure - systemic effects	3,5 mg/m3	
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate 15625-89-5	General population	dermal	Long term exposure - systemic effects	42 mg/kg	
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate 15625-89-5	General population	inhalation	Long term exposure - systemic effects	0,87 mg/m3	
2-Ethyl-2-[[(1-oxoallyl)oxy]methyl]-1,3- propanediyl diacrylate 15625-89-5	General population	oral	Long term exposure - systemic effects	0,5 mg/kg	

Biological Exposure Indices:

None

8.2. Exposure controls:

Engineering controls: Ensure good ventilation/extraction.

Respiratory protection:

Ensure adequate ventilation.

An approved mask or respirator fitted with an organic vapour cartridge should be worn if the product is used in a poorly ventilated area

Filter type: A (EN 14387)

Hand protection:

Chemical-resistant protective gloves (EN 374).

Suitable materials for short-term contact or splashes (recommended: at least protection index 2, corresponding to > 30 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

Suitable materials for longer, direct contact (recommended: protection index 6, corresponding to > 480 minutes permeation time as per EN 374):

nitrile rubber (NBR; >= 0.4 mm thickness)

This information is based on literature references and on information provided by glove manufacturers, or is derived by analogy with similar substances. Please note that in practice the working life of chemical-resistant protective gloves may be considerably shorter than the permeation time determined in accordance with EN 374 as a result of the many influencing factors (e.g. temperature). If signs of wear and tear are noticed then the gloves should be replaced.

Eye protection:

Safety glasses with sideshields or chemical safety goggles should be worn if there is a risk of splashing. Protective eye equipment should conform to EN166.

Skin protection:

Wear suitable protective clothing.

Protective clothing should conform to EN 14605 for liquid splashes or to EN 13982 for dusts.

Advices to personal protection equipment:

The information provided on personal protective equipment is for guidance purposes only. A full risk assessment should be conducted prior to using this product to determine the appropriate personal protective equipment to suit local conditions. Personal protective equipment should conform to the relevant EN standard.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state liquid
Delivery form liquid
Colour white
Odor Acrylic

Melting point Not applicable, Product is a liquid

Solidification temperature $<0~^{\circ}\text{C}~(<32~^{\circ}\text{F})$ Initial boiling point $>149~^{\circ}\text{C}~(>300.2~^{\circ}\text{F})$ Flammability The product is not flammable.

Explosive limits Not applicable, The product is not flammable.

Flash point > 93,3 °C (> 199.94 °F)

Auto-ignition temperature Not applicable, The product is not flammable.

Decomposition temperature Not applicable, Substance/mixture is not self-reactive, no

organic peroxide and does not decompose under foreseen

conditions of use

pH Not applicable, Product is non-soluble (in water).

Viscosity (kinematic) > 20,5 mm2/s

(40 °C (104 °F);)

Solubility (qualitative) practically insoluble

(20 °C (68 °F); Solvent: Water)

Partition coefficient: n-octanol/water Not applicable

Mixture < 1.3 kPa

Vapour pressure < 1,3 kPa

(20 °C (68 °F))

Density 1,1 g/cm3 no method

(20 °C (68 °F))

Relative vapour density: > 1

(20 °C)

Particle characteristics Not applicable Product is a liquid

9.2. Other information

Other information not applicable for this product

SECTION 10: Stability and reactivity

10.1. Reactivity

Reacts with strong oxidants.

Acids.

Reducing agents.

Strong bases.

10.2. Chemical stability

Stable under recommended storage conditions.

10.3. Possibility of hazardous reactions

See section reactivity

10.4. Conditions to avoid

Stable under normal conditions of storage and use.

10.5. Incompatible materials

See section reactivity.

10.6. Hazardous decomposition products

carbon oxides.

Hydrocarbons

nitrogen oxides

Rapid polymerisation may generate excessive heat and pressure.

SECTION 11: Toxicological information

1.1 Information on hazard classes as defined in Regulation (EC) No 1272/2008

Acute oral toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Species	Method
CAS-No.	type			
2H-Azepin-2-one, 1- ethenylhexahydro- 2235-00-9	LD50	1.114 mg/kg	rat	OECD Guideline 401 (Acute Oral Toxicity)
2-Propenoic acid, dodecyl ester 2156-97-0	LD50	> 5.570 mg/kg	rat	equivalent or similar to OECD Guideline 401 (Acute Oral Toxicity)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2-hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	LD50	> 2.000 mg/kg	rat	EU Method B.1 (Acute Toxicity (Oral))
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphi nate 84434-11-7	LD50	> 5.000 mg/kg	rat	OECD Guideline 401 (Acute Oral Toxicity)
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	LD50	3.230 mg/kg	rat	OECD Guideline 423 (Acute Oral toxicity)
Triacrylate ester 52408-84-1	LD50	> 2.000 mg/kg	rat	OECD Guideline 401 (Acute Oral Toxicity)
2-Hydroxyethyl methacrylate 868-77-9	LD50	5.564 mg/kg	rat	FDA Guideline
Butyl hydroxytoluene 128-37-0	LD50	> 6.000 mg/kg	rat	OECD Guideline 401 (Acute Oral Toxicity)
Titanium dioxide 13463-67-7	LD50	> 5.000 mg/kg	rat	OECD Guideline 425 (Acute Oral Toxicity: Up-and-Down Procedure)
Trimethylolpropane triacrylate 15625-89-5	LD50	> 5.000 mg/kg	rat	not specified

Acute dermal toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Value	Value	Species	Method
type			
LD50	1.700 mg/kg	rabbit	OECD Guideline 402 (Acute Dermal Toxicity)
LD50	> 5.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
T D 50	2 000 #		OF GROUND AND AND AND AND AND AND AND AND AND A
LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
I D.50	2.170 #		OFFICE COLLEGE AND AREA COLLEGE
LD50	> 3.1 /0 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
Agusta	2 171 mg/kg		Expert judgement
	5.171 Hig/Kg		Expert judgement
-			
	> 2.000 mg/kg	rabbit	OECD Guideline 402 (Acute Dermal Toxicity)
LD30	> 2.000 mg/kg	Tabbit	OLCD Guideline 402 (Acute Definal Toxicity)
LD50	> 5 000 mg/kg	rabbit	not specified
LDSO	> 5.000 mg/kg	lubbit	not specified
LD50	> 2.000 mg/kg	rat	OECD Guideline 402 (Acute Dermal Toxicity)
			(
LD50	> 10.000 mg/kg	rabbit	not specified
LD50	7.050 mg/kg	rabbit	not specified
			<u> </u>
	LD50 LD50 LD50 LD50 LD50 LD50 LD50 LD50	type LD50 1.700 mg/kg LD50 > 5.000 mg/kg LD50 > 2.000 mg/kg LD50 > 2.000 mg/kg LD50 > 3.170 mg/kg LD50 > 3.171 mg/kg toxicity estimate (ATE) LD50 LD50 > 2.000 mg/kg LD50 > 5.000 mg/kg LD50 > 2.000 mg/kg LD50 > 10.000 mg/kg	type Image: Control of the

Acute inhalative toxicity:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Test atmosphere	Exposure time	Species	Method
Titanium dioxide	LC50	> 6,82 mg/l	dust	4 h	rat	not specified
13463-67-7		_				

Skin corrosion/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Result	Exposure	Species	Method
CAS-No.		time		
Triacrylate ester	not irritating	4 h	rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
52408-84-1				
2-Hydroxyethyl	slightly	24 h	rabbit	Draize Test
methacrylate	irritating			
868-77-9				
Butyl hydroxytoluene	not irritating	4 h	rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
128-37-0				
Titanium dioxide	not irritating	4 h	rabbit	OECD Guideline 404 (Acute Dermal Irritation / Corrosion)
13463-67-7				

Serious eye damage/irritation:

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Result	Exposure	Species	Method
CAS-No.		time		
Triacrylate ester	irritating		rabbit	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
52408-84-1				
2-Hydroxyethyl	Category 2B		rabbit	Draize Test
methacrylate	(mildly			
868-77-9	irritating to			
	eyes)			
Butyl hydroxytoluene	slightly		rabbit	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
128-37-0	irritating			
Titanium dioxide	not irritating		rabbit	OECD Guideline 405 (Acute Eye Irritation / Corrosion)
13463-67-7				

Respiratory or skin sensitization:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances	Result	Test type	Species	Method
CAS-No.				
2H-Azepin-2-one, 1- ethenylhexahydro- 2235-00-9	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphi nate 84434-11-7	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	sensitising	Guinea pig maximisation test	guinea pig	OECD Guideline 406 (Skin Sensitisation)
Triacrylate ester 52408-84-1	sensitising	Mouse local lymphnode assay (LLNA)	mouse	OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
2-Hydroxyethyl methacrylate 868-77-9	not sensitising	Buehler test	guinea pig	Buehler test
2-Hydroxyethyl methacrylate 868-77-9	sensitising	Guinea pig maximisation test	guinea pig	Magnusson and Kligman Method
Butyl hydroxytoluene 128-37-0	not sensitising	Draize Test	guinea pig	Draize Test
Titanium dioxide 13463-67-7	not sensitising	Mouse local lymphnode assay (LLNA)	mouse	equivalent or similar to OECD Guideline 429 (Skin Sensitisation: Local Lymph Node Assay)
Titanium dioxide 13463-67-7	not sensitising	Buehler test	guinea pig	OECD Guideline 406 (Skin Sensitisation)

Germ cell mutagenicity:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result	Type of study / Route of administration	Metabolic activation / Exposure time	Species	Method
Triacrylate ester 52408-84-1	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Triacrylate ester 52408-84-1	negative	in vitro mammalian chromosome aberration test	with and without		OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test)
Triacrylate ester 52408-84-1	positive	mammalian cell gene mutation assay	with and without		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
2-Hydroxyethyl methacrylate 868-77-9	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
2-Hydroxyethyl methacrylate 868-77-9	positive	in vitro mammalian chromosome aberration test	with and without		OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test)
2-Hydroxyethyl methacrylate 868-77-9	negative	mammalian cell gene mutation assay	with and without		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Butyl hydroxytoluene 128-37-0	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		not specified
Butyl hydroxytoluene 128-37-0	negative	in vitro mammalian chromosome aberration test	with and without		not specified
Butyl hydroxytoluene 128-37-0	negative	mammalian cell gene mutation assay	with		not specified
Titanium dioxide 13463-67-7	negative	bacterial reverse mutation assay (e.g Ames test)	with and without		OECD Guideline 471 (Bacterial Reverse Mutation Assay)
Titanium dioxide 13463-67-7	negative	in vitro mammalian chromosome aberration test	with and without		OECD Guideline 473 (In vitro Mammalian Chromosome Aberration Test)
Titanium dioxide 13463-67-7	negative	mammalian cell gene mutation assay	with and without		OECD Guideline 476 (In vitro Mammalian Cell Gene Mutation Test)
Titanium dioxide 13463-67-7	negative	in vitro mammalian cell micronucleus test	without		equivalent or similar to OECD Guideline 487 (In vitro Mammalian Cell Micronucleus Test)

Carcinogenicity

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous components CAS-No.	Result	Route of application	Exposure time / Frequency of treatment	Species	Sex	Method
2-Hydroxyethyl methacrylate 868-77-9	not carcinogenic	inhalation	2 y 6 h/d, 5 d/w	rat	female	equivalent or similar OECD Guideline 451 (Carcinogenicity Studies)
2-Hydroxyethyl methacrylate 868-77-9	not carcinogenic	inhalation	2 y 6 h/d, 5 d/w	rat	male	equivalent or similar OECD Guideline 451 (Carcinogenicity Studies)
Butyl hydroxytoluene 128-37-0		oral: feed	2 y daily	rat	male	
Titanium dioxide 13463-67-7	not carcinogenic	oral: feed	103 w daily	rat	male/female	not specified

Reproductive toxicity:

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Result / Value	Test type	Route of application	Species	Method
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	NOAEL P < 221 mg/kg NOAEL F1 221 mg/kg		oral: feed	rat	OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
Triacrylate ester 52408-84-1	NOAEL P 750 mg/kg NOAEL F1 >= 750 mg/kg	screening	oral: gavage	rat	OECD Guideline 422 (Combined Repeated Dose Toxicity Study with the Reproduction / Developmental Toxicity Screening Test)
2-Hydroxyethyl methacrylate 868-77-9	NOAEL P >= 1.000 mg/kg NOAEL F1 >= 1.000 mg/kg	screening	oral: gavage	rat	equivalent or similar to OECD Guideline 422 (Combined Repeated Dose Toxicity Study)
Butyl hydroxytoluene 128-37-0	NOAEL P 500 mg/kg	Two generation study	oral: feed	rat	not specified
Titanium dioxide 13463-67-7	NOAEL P >= 1.000 mg/kg NOAEL F1 >= 1.000 mg/kg	one- generation study	oral: feed	rat	OECD Guideline 443 (Extended One-Generation Reproductive Toxicity Study)

STOT-single exposure:

No data available.

STOT-repeated exposure::

The mixture is classified based on threshold limits referring to the classified substances present in the mixture.

Hazardous substances	Result / Value	Route of	Exposure time /	Species	Method
CAS-No.		application	Frequency of		
277 4 : 2 1			treatment		OFGD G '111' 412
2H-Azepin-2-one, 1-		inhalation:	90 d	rat	OECD Guideline 413
ethenylhexahydro-		vapour	5 hours/day; 5		(Subchronic Inhalation
2235-00-9			days/week		Toxicity: 90-Day)
Triacrylate ester	NOAEL 250 mg/kg	oral: gavage	28-52 d	rat	OECD Guideline 422
52408-84-1			daily		(Combined Repeated
					Dose Toxicity Study with
					the Reproduction /
					Developmental Toxicity
					Screening Test)
2-Hydroxyethyl	NOAEL 100 mg/kg	oral: gavage	49 d	rat	OECD Guideline 422
methacrylate			daily		(Combined Repeated
868-77-9			·		Dose Toxicity Study with
					the Reproduction /
					Developmental Toxicity
					Screening Test)
2-Hydroxyethyl	NOAEL 0,352 mg/l	inhalation	90 d	rat	OECD Guideline 413
methacrylate			6 h/d, 5 d/w		(Subchronic Inhalation
868-77-9			,		Toxicity: 90-Day)
Butyl hydroxytoluene	NOAEL 25 mg/kg	oral: feed	daily	rat	not specified
128-37-0			,		1
Titanium dioxide	NOAEL > 1.000 mg/kg	oral: gavage	92 d	rat	OECD Guideline 408
13463-67-7			daily		(Repeated Dose 90-Day
			,		Oral Toxicity in Rodents)

Aspiration hazard:

No data available.

${\bf 11.2\ Information\ on\ other\ hazards}$

not applicable

SECTION 12: Ecological information

General ecological information:

Do not empty into drains / surface water / ground water.

12.1. Toxicity

Toxicity (Fish):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
2H-Azepin-2-one, 1- ethenylhexahydro- 2235-00-9	LC50	318 mg/l	96 h	Brachydanio rerio (new name: Danio rerio)	OECD Guideline 203 (Fish, Acute Toxicity Test)
2-Propenoic acid, dodecyl ester 2156-97-0	LC50	Toxicity > Water solubility	96 h	Pimephales promelas	other guideline:
2-Propenoic acid, dodecyl ester 2156-97-0	NOEC	Toxicity > Water solubility	30 d	Brachydanio rerio (new name: Danio rerio)	OECD Guideline 210 (fish early lite stage toxicity test)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	LC50	Toxicity > Water solubility	95 h	Oncorhynchus mykiss	EU Method C.1 (Acute Toxicity for Fish)
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	LC50	1,89 mg/l	96 h	Danio rerio	OECD Guideline 203 (Fish, Acute Toxicity Test)
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	LC50	0,9 mg/l	96 h	Danio rerio	OECD Guideline 203 (Fish, Acute Toxicity Test)
Triacrylate ester 52408-84-1	LC50	5,74 mg/l	96 h	Danio rerio (reported as Brachydanio rerio)	OECD Guideline 203 (Fish, Acute Toxicity Test)
2-Hydroxyethyl methacrylate 868-77-9	LC50	> 100 mg/l	96 h	Oryzias latipes	OECD Guideline 203 (Fish, Acute Toxicity Test)
Butyl hydroxytoluene 128-37-0	LC50	Toxicity > Water solubility	96 h	Brachydanio rerio (new name: Danio rerio)	EU Method C.1 (Acute Toxicity for Fish)
Butyl hydroxytoluene 128-37-0	NOEC	0,053 mg/l	30 d	Oryzias latipes	OECD Guideline 210 (fish early lite stage toxicity test)
Titanium dioxide 13463-67-7	LC50	Toxicity > Water solubility	48 h	Leuciscus idus	OECD Guideline 203 (Fish, Acute Toxicity Test)
Trimethylolpropane triacrylate 15625-89-5	LC50	0,87 mg/l	96 h	Danio rerio (reported as Brachydanio rerio)	OECD Guideline 203 (Fish, Acute Toxicity Test)

Toxicity (Daphnia):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type		_		
2-Propenoic acid, dodecyl ester 2156-97-0	EC50	Toxicity > Water solubility	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	EC50	Toxicity > Water solubility	48 h	Daphnia magna	EU Method C.2 (Acute Toxicity for Daphnia)
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	EC50	2,26 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Triacrylate ester 52408-84-1	EC50	91,4 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
2-Hydroxyethyl methacrylate 868-77-9	EC50	380 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)

Butyl hydroxytoluene 128-37-0	EC50	0,48 mg/l	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Titanium dioxide 13463-67-7	EC50	Toxicity > Water solubility	48 h	Daphnia magna	OECD Guideline 202 (Daphnia sp. Acute Immobilisation Test)
Trimethylolpropane triacrylate 15625-89-5	EC50	19,9 mg/l	48 h	Daphnia magna	EU Method C.2 (Acute Toxicity for Daphnia)

Chronic toxicity to aquatic invertebrates

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
2-Propenoic acid, dodecyl ester 2156-97-0	NOEC	Toxicity > Water solubility	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
Reaction mass of pentamethyl- 4-piperidylsebacates 1065336-91-5	NOEC	1 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
2-Hydroxyethyl methacrylate 868-77-9	NOEC	24,1 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
Butyl hydroxytoluene 128-37-0	NOEC	0,069 mg/l	21 d	Daphnia magna	OECD 211 (Daphnia magna, Reproduction Test)
Titanium dioxide 13463-67-7	NOEC	Toxicity > Water solubility	21 d	Daphnia magna	OECD Guideline 202 (Daphnia sp. Chronic Immobilisation Test)

Toxicity (Algae):

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances CAS-No.	Value type	Value	Exposure time	Species	Method
2-Propenoic acid, dodecyl ester 2156-97-0	EC50	Toxicity > Water solubility	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	EC50	Toxicity > Water solubility	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	EC10	Toxicity > Water solubility	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	EC50	1,01 mg/l	72 h	Desmodesmus subspicatus	not specified
Reaction mass of pentamethyl- 4-piperidylsebacates 1065336-91-5		0,22 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
Reaction mass of pentamethyl- 4-piperidylsebacates 1065336-91-5	EC50	1,68 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
Triacrylate ester 52408-84-1	EC50	12,2 mg/l	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Triacrylate ester 52408-84-1	EC10	2,06 mg/l	72 h	Desmodesmus subspicatus	OECD Guideline 201 (Alga, Growth Inhibition Test)
2-Hydroxyethyl methacrylate 868-77-9	EC50	836 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga,
2-Hydroxyethyl methacrylate 868-77-9	NOEC	400 mg/l	72 h	Selenastrum capricornutum (new name: Pseudokirchneriella subcapitata)	OECD Guideline 201 (Alga, Growth Inhibition Test)
Butyl hydroxytoluene 128-37-0	EC50	Toxicity > Water solubility	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	EU Method C.3 (Algal Inhibition test)
Butyl hydroxytoluene 128-37-0	EC10	0,4 mg/l	72 h	Desmodesmus subspicatus (reported as Scenedesmus subspicatus)	EU Method C.3 (Algal Inhibition test)
Titanium dioxide 13463-67-7	EC50	Toxicity > Water solubility	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Titanium dioxide 13463-67-7	NOEC	Toxicity > Water solubility	72 h	Pseudokirchneriella subcapitata	OECD Guideline 201 (Alga, Growth Inhibition Test)
Trimethylolpropane triacrylate 15625-89-5	EC50	18,8 mg/l	72 h	Desmodesmus subspicatus	EU Method C.3 (Algal Inhibition test)
Trimethylolpropane triacrylate 15625-89-5	EC10	1,9 mg/l	72 h	Desmodesmus subspicatus	EU Method C.3 (Algal Inhibition test)

Toxicity to microorganisms

The mixture is classified based on calculation method referring to the classified substances present in the mixture.

Hazardous substances	Value	Value	Exposure time	Species	Method
CAS-No.	type				
2-Propenoic acid, dodecyl	EC 50	> 10.000 mg/l	30 min		not specified
ester					
2156-97-0					
Mixture of less 3-(4-(2-	IC50	Toxicity > Water	3 h	not specified	EU Method C.11
Hydroxy-2-		solubility			(Biodegradation: Activated
methylpropionyl)phenyl)-					Sludge Respiration
1,1,3-trimethylindan-6-yl 2-					Inhibition Test)
hydroxyprop-2yl ketone and					
3-(4-(2-Hydroxy-2-m					
163702-01-0					
Reaction mass of pentamethyl-	IC50	100 mg/l	3 h	activated sludge	OECD Guideline 209
4-piperidylsebacates					(Activated Sludge,
1065336-91-5					Respiration Inhibition Test)
Triacrylate ester	EC20	507 mg/l	3 h	activated sludge	OECD Guideline 209

52408-84-1					(Activated Sludge, Respiration Inhibition Test)
2-Hydroxyethyl methacrylate 868-77-9	EC0	> 3.000 mg/l	16 h	Pseudomonas fluorescens	other guideline:
Butyl hydroxytoluene 128-37-0	EC50	Toxicity > Water solubility	3 h	activated sludge	OECD Guideline 209 (Activated Sludge, Respiration Inhibition Test)
Titanium dioxide 13463-67-7	EC0	Toxicity > Water solubility	24 h	Pseudomonas fluorescens	DIN 38412, part 8 (Pseudomonas Zellvermehrungshemm- Test)
Trimethylolpropane triacrylate 15625-89-5	EC20	625 mg/l	30 min	activated sludge, domestic	ISO 8192 (Test for Inhibition of Oxygen Consumption by Activated Sludge)

12.2. Persistence and degradability

Hazardous substances CAS-No.	Result	Test type	Degradability	Exposure time	Method
Aliphatic Urethane Acrylate Oligomer	readily biodegradable		> 60 %	28 day	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
Aliphatic Urethane Acrylate Oligomer	readily biodegradable	aerobic	> 60 %	28 d	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
2-Propenoic acid, dodecyl ester 2156-97-0	readily biodegradable	aerobic	80 - 90 %	28 d	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
Mixture of less 3-(4-(2- Hydroxy-2- methylpropionyl)phenyl)- 1,1,3-trimethylindan-6-yl 2- hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	not readily biodegradable.	not specified	1,8 %	28 day	Directive 84/449/EEC, C.7
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7		aerobic	< 10 %	28 d	OECD Guideline 301 F (Ready Biodegradability: Manometric Respirometry Test)
Reaction mass of pentamethyl- 4-piperidylsebacates 1065336-91-5	not readily biodegradable.	aerobic	38 %	28 d	OECD Guideline 301 E (Ready biodegradability: Modified OECD Screening Test)
Triacrylate ester 52408-84-1	readily biodegradable	aerobic	72 - 85 %	28 d	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
2-Hydroxyethyl methacrylate 868-77-9	readily biodegradable	aerobic	92 - 100 %	14 d	OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
Butyl hydroxytoluene 128-37-0	not readily biodegradable.	aerobic	4,5 %	28 d	OECD Guideline 301 C (Ready Biodegradability: Modified MITI Test (I))
Butyl hydroxytoluene 128-37-0	not inherently biodegradable	aerobic	5,2 - 5,6 %	35 d	OECD Guideline 302 C (Inherent Biodegradability: Modified MITI Test (II))
Trimethylolpropane triacrylate 15625-89-5	readily biodegradable	aerobic	> 82 - 90 %	28 d	OECD Guideline 301 B (Ready Biodegradability: CO2 Evolution Test)
Trimethylolpropane triacrylate 15625-89-5	inherently biodegradable	aerobic	> 70 %	28 d	OECD Guideline 302 B (Inherent biodegradability: Zahn- Wellens/EMPA Test)

12.3. Bioaccumulative potential

Hazardous substances CAS-No.	Bioconcentratio n factor (BCF)	Exposure time	Temperature	Species	Method
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	< 31,4	56 d	24,5 °C	Cyprinus carpio	other guideline:
Butyl hydroxytoluene 128-37-0	330 - 1.800	56 d		Cyprinus carpio	OECD Guideline 305 C (Bioaccumulation: Test for the Degree of Bioconcentration in Fish)

12.4. Mobility in soil

Hazardous substances	LogPow	Temperature	Method
CAS-No.			
2-Propenoic acid, dodecyl	6,13		QSAR (Quantitative Structure Activity Relationship)
ester			
2156-97-0			
Mixture of less 3-(4-(2-	4,53		EU Method A.8 (Partition Coefficient)
Hydroxy-2-			
methylpropionyl)phenyl)-			
1,1,3-trimethylindan-6-yl 2-			
hydroxyprop-2yl ketone and			
3-(4-(2-Hydroxy-2-m			
163702-01-0			
Ethyl phenyl(2,4,6-	2,91	25 °C	EU Method A.8 (Partition Coefficient)
trimethylbenzoyl)phosphinate			
84434-11-7			
Reaction mass of	> 2,37 - 2,77	25 °C	OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake
pentamethyl-4-			Flask Method)
piperidylsebacates			
1065336-91-5			
2-Hydroxyethyl methacrylate	0,42	25 °C	OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake
868-77-9			Flask Method)
Butyl hydroxytoluene	5,1		OECD Guideline 107 (Partition Coefficient (n-octanol / water), Shake
128-37-0			Flask Method)
Trimethylolpropane triacrylate	4,35	20 °C	QSAR (Quantitative Structure Activity Relationship)
15625-89-5			

12.5. Results of PBT and vPvB assessment

Hazardous substances CAS-No.	PBT / vPvB
2H-Azepin-2-one, 1-ethenylhexahydro- 2235-00-9	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Aliphatic Urethane Acrylate Oligomer	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
2-Propenoic acid, dodecyl ester 2156-97-0	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Mixture of less 3-(4-(2-Hydroxy-2-methylpropionyl)phenyl)-1,1,3-trimethylindan-6-yl 2-hydroxyprop-2yl ketone and 3-(4-(2-Hydroxy-2-m 163702-01-0	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Ethyl phenyl(2,4,6- trimethylbenzoyl)phosphinate 84434-11-7	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Reaction mass of pentamethyl-4- piperidylsebacates 1065336-91-5	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Triacrylate ester 52408-84-1	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
2-Hydroxyethyl methacrylate 868-77-9	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Butyl hydroxytoluene 128-37-0	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.
Titanium dioxide 13463-67-7	According to Annex XIII of regulation (EC) 1907/2006 a PBT and vPvB assessment shall not be conducted for inorganic substances.
Trimethylolpropane triacrylate 15625-89-5	Not fulfilling Persistent, Bioaccumulative and Toxic (PBT), very Persistent and very Bioaccumulative (vPvB) criteria.

12.6. Endocrine disrupting properties

not applicable

12.7. Other adverse effects

No data available.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Product disposal:

Do not empty into drains / surface water / ground water.

Dispose of in accordance with local and national regulations.

Disposal of uncleaned packages:

After use, tubes, cartons and bottles containing residual product should be disposed of as chemically contaminated waste in an authorised legal land fill site or incinerated.

Waste code

08 04 09* waste adhesives and sealants containing organic solvents and other dangerous substances

The valid EWC waste code numbers are source-related. The manufacturer is therefore unable to specify EWC waste codes for the articles or products used in the various sectors. The EWC codes listed are intended as a recommendation for users. We will be happy to advise you.

SECTION 14: Transport information

14.1. UN number or ID number

ADR	3082
RID	3082
ADN	3082
IMDG	3082
IATA	3082

14.2. UN proper shipping name

ADR	ENVIRONMENTALLY	HAZARDOUS SUBSTANC	E, LIQUID, N.O.S. (Do	decyl
-----	-----------------	--------------------	-----------------------	-------

acrylate, Reaction mass of pentamethyl-4-piperidylsebacates)

RID ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Dodecyl

acrylate, Reaction mass of pentamethyl-4-piperidylsebacates)

ADN ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Dodecyl

acrylate,Reaction mass of pentamethyl-4-piperidylsebacates) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (Dodecyl

IMDG ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUII acrylate, Reaction mass of pentamethyl-4-piperidylsebacates)

IATA Environmentally hazardous substance, liquid, n.o.s. (Dodecyl acrylate, Reaction mass

of pentamethyl-4-piperidylsebacates)

14.3. Transport hazard class(es)

ADR	9
RID	9
ADN	9
IMDG	9
IATA	g

14.4. Packing group

ADR	III
RID	III
ADN	III
IMDG	III
IATA	III

14.5. Environmental hazards

ADR	not applicable
RID	not applicable
ADN	not applicable
IMDG	Marine pollutant
IATA	not applicable

14.6. Special precautions for user

ADR not applicable

Tunnelcode:
RID not applicable
ADN not applicable
IMDG not applicable
IATA not applicable

The transport classifications in this section apply generally to packed and bulk goods alike. For containers with a net volume of no more than 5 L for liquid substances or a net mass of no more than 5 kg for solid substances per individual or inner package, the exemptions SP 375 (ADR), A197 (IATA), 2.10.2.7 (IMDG) may be applied, which can result in a deviation from the transport classification for packed goods.

14.7. Maritime transport in bulk according to IMO instruments

not applicable

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

Ozone Depleting Substance (ODS) (Regulation (EC) No 1005/2009): Not applicable Prior Informed Consent (PIC) (Regulation (EU) No 649/2012): Not applicable Persistent organic pollutants (Regulation (EU) 2019/1021): Not applicable

VOC content < 3 % (2010/75/EC)

15.2. Chemical safety assessment

A chemical safety assessment has not been carried out.

SECTION 16: Other information

The labelling of the product is indicated in Section 2. The full text

of all abbreviations indicated by codes in this safety data sheet are as follows:

H302 Harmful if swallowed.

H312 Harmful in contact with skin.

H315 Causes skin irritation.

H317 May cause an allergic skin reaction.

H319 Causes serious eye irritation.

H335 May cause respiratory irritation.

H351 Suspected of causing cancer.

H361f Suspected of damaging fertility.

H372 Causes damage to organs through prolonged or repeated exposure.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

H411 Toxic to aquatic life with long lasting effects.

ED: Substance identified as having endocrine disrupting properties

EU OEL: Substance with a Union workplace exposure limit
EU EXPLD 1: Substance listed in Annex I, Reg (EC) No. 2019/1148
EU EXPLD 2 Substance listed in Annex II, Reg (EC) No. 2019/1148
SVHC: Substance of very high concern (REACH Candidate List)
PBT: Substance fulfilling persistent, bioaccumulative and toxic criteria

PBT/vPvB: Substance fulfilling persistent, bioaccumulative and toxic plus very persistent and very

bioaccumulative criteria

vPvB: Substance fulfilling very persistent and very bioaccumulative criteria

Further information:

This Safety Data Sheet has been produced for sales from Henkel to parties purchasing from Henkel, is based on Regulation (EC) No 1907/2006 and provides information in accordance with applicable regulations of the European Union only. In that respect, no statement, warranty or representation of any kind is given as to compliance with any statutory laws or regulations of any other jurisdiction or territory other than the European Union. When exporting to territories other than the European Union, please consult with the respective Safety Data Sheet of the concerned territory to ensure compliance or liaise with Henkel's Product Safety and Regulatory Affairs Department (SDSinfo.Adhesive@henkel.com) prior to export to other territories than the European Union.

This information is based on our current level of knowledge and relates to the product in the state in which it is delivered. It is intended to describe our products from the point of view of safety requirements and is not intended to guarantee any particular properties.

Dear Customer,

Henkel is committed to creating a sustainable future by promoting opportunities along the entire value chain. If you would like to contribute by switching from a paper to the electronic version of SDS, please contact the local Customer Service representative. We recommend to use a non-personal email address (e.g. SDS@your_company.com).

Relevant changes in this safety data sheet are indicated by vertical lines at the left margin in the body of this document. Corresponding text is displayed in a different color on shadowed fields.

Annex - Exposure Scenarios:

Exposure Scenarios for 2-Hydroxyethyl methacrylate can be downloaded under the following link: https://mysds.henkel.com/index.html#/appSelection